NOM:

Interrogation 6A du mardi 31 mars 2015

1)	a) Donner l'équation de combustion dans l'air du décane $C_{10}H_{22(l)}$ sans forcément passer par les ½ équations rédox.
	c) Qui réduit qui en quoi lors de cette réaction ?
	appelle-t-on énergie molaire de combustion ? Donner l'équation mathématique issue de cette définition en présentant toutes ndeurs qui y interviennent.
3) Dor	nner l'expression de l'énergie potentielle de pesanteur en explicitant chacun des termes et en indiquant les unités du SI.
	nvertir en mettant sous forme scientifique en posant le calcul mais sans l'achever. 10 ⁴ kW.h en J b) 45.10 ⁸ mJ en MW.jour c) 33 km.h ⁻¹ en m.s ⁻¹
	: Interrogation 6B du mardi 31 mars 2015 appelle-t-on énergie molaire de combustion ? Donner l'équation mathématique issue de cette définition en présentant toutes ndeurs qui y interviennent.
2)	a) Donner l'équation de combustion dans l'air du décane $C_{10}H_{22(l)}$ sans forcément passer par les ½ équations rédox.
	c) Qui réduit qui en quoi lors de cette réaction ?
3) Dor	nner l'expression de l'énergie potentielle de pesanteur en explicitant chacun des termes et en indiquant les unités du SI.
4) Cor	a) 7,9.10 ⁷ kW.h en J b) 45.10 ⁵ mJ en MW.jour c) 0,33 km.h ⁻¹ en m.s ⁻¹