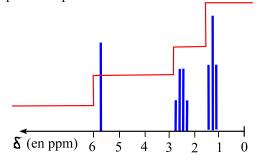
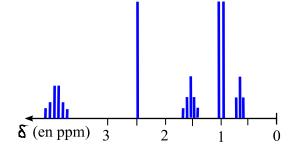

Activité/exercices spectroscopie,2ème série


Exercice 1:

- a) Interpréter le spectre de CH₃-CH₂-O-CH₂-CH₃ donné dans le cours (spectre I)
- b) Interpréter au maximum le spectre de l'aspirine en justifiant notamment la multiplicité des doublets.

Exercice 2

- 1) Donner la formule développée de l'éthanol et du propanamide.
- 2) Quelle information du spectre doit-on utiliser pour l'associer à la bonne molécule parmi les deux précédentes ?
- 3) Une fois l'association faite, faire une correspondance complète des spectres et des molécules.

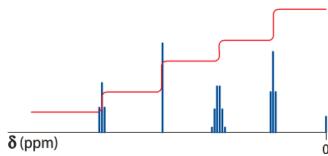


Exercice 3

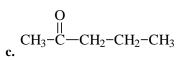
Voici le spectre du butan-2-ol.

- 1) Faire la correspondance entre le spectre et la molécule.
- 2) Dessiner l'allure de la courbe d'intégration.

Exercice 4


Considérons la molécule de 3-hydroxybutan-2-one

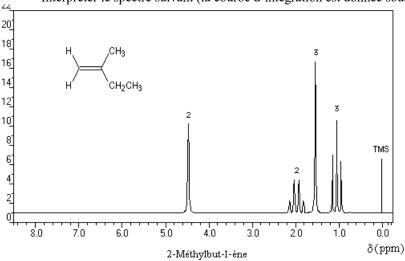
Dessiner l'allure de son spectre RMN en utilisant la table de déplacement ci-dessous:


Hydrogène concerné	Déplacement en ppm	Taille relative du pic principal
CH ₃ (relié à CH)	1,4	moyenne
CH ₃ (relié à C=O)	2,2	grand
OH	3,7	Petit
CH (relié à OH)	4,3	petit

Exercice 5

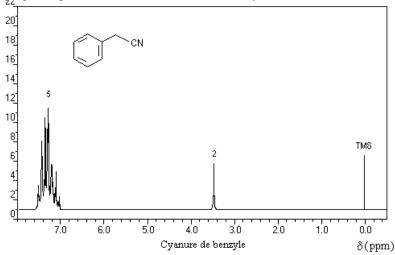
On considère une molécule de formule brute C₅H₁₀O. On donne son spectre RMN et la courbe d'intégration:

On voudrait savoir à laquelle des trois formules semi-développées ci-dessous correspond ce spectre.



- 1) Donner le nom des 3 molécules.
- 2) Eliminer celles qui ne conviennent pas avec le spectre.
- 3) Faire la correspondance entre le spectre et la molécule retenue.

Aide : penser que plus un groupe de protons équivalents est proche d'un atome électronégatif, plus son déplacement chimique sera important


Exercice 6

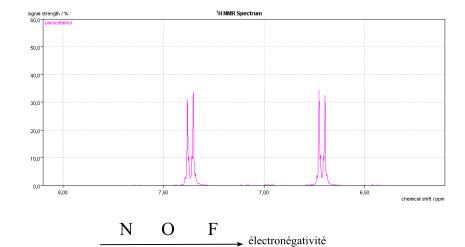
Interpréter le spectre suivant (la courbe d'intégration est donnée sous forme de nombres au-dessus des signaux)

Exercice 7

Interpréter le spectre suivant (la courbe d'intégration est donnée sous forme de nombres au-dessus des signaux) et expliquer la présence d'un massif difficile à analyser.

Exercice 8

N°8 p 564


Exercice 9

A inclure dans le rendu du TP paracétamol, en complément pour la question 14 du CR Voici le zoom SPECTRE RMN du

paracétamol sur la zone 6-8 ppm :

Table RMN

Type de proton	δ/ppm
R-C H ₃	0,8-1,2
$R - C\mathbf{H}_2 - R$	1,2-1,4
$R - CH_2 - OH$	3,3-3,4
R-CO-C H ₃	2,1 -2,6
R-CO-N H-	9,5 -9,6

croissante

En déduire une analyse du spectre RMN la plus complète possible (en plus du spectre IR)