TD n°4 réactions de dissolution et de précipitation

Exercice 1: autour du chlorure de plomb

- 1) Rappeler la définition de la solubilité d'un solide.
- 2) Déterminer la solubilité molaire du chlorure de plomb dans l'eau pure. En déduire la solubilité massique correspondante. Que signifie-t-elle ?
- 3) Même question dans une solution de chlorure de sodium de concentration $C = 1,0.10^{-2} \text{ mol.L}^{-1}$

Donnée : le produit de solubilité du chlorure de plomb vaut 1,2.10⁻⁵.

 $M(PbCl_2) = 278,1 \text{ g.mol}^{-1}$

Exercice 2: hydroxyde amphotère

On introduit $n = 1,0.10^{-2}$ mol d'ions Zn^{2+} dans 1,00 d'une solution initialement à pH = 0. La solution est limpide. On ajoute progressivement de la soude : un précipité apparaît puis disparaît.

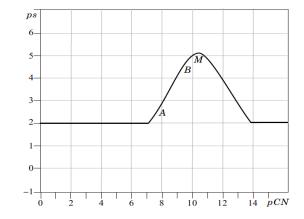
- 1) Interpréter ces observations en indiquant les réactions associées.
- 2) Déterminer le diagramme d'existence, en pH, du précipité dans ces conditions.

 $Donn\acute{e}s : pKs(Zn(OH)_2) = 16,4$

 $\log \beta([Zn(OH)_4]^{2-} = 15.4$

Exercice 3 : solubilité du cyanure d'argent

Cf cours paragraphe III 3) c) ii) et son interprétation qualitative à refaire.

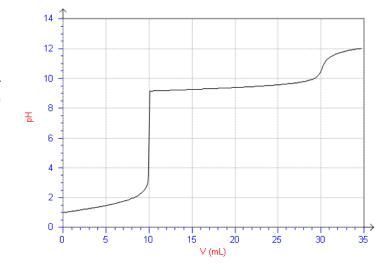

Une solution concentrée de cyanure de sodium (Na⁺, CN⁻) est progressivement ajoutée à une solution de nitrate d'argent (Ag⁺, NO₃⁻) de concentration $c = 1,0.10^{-2}$ mol.L⁻¹ sans variation de volume. On obtient le diagramme ps = f(pCN) ci-contre.

Données : Ag^+ forme un précipité $AgCN_{(s)}$ et un complexe $Ag(CN)_2^-$ avec les ions cyanures.

Sur l'exemple de rédaction du paragraphe III 3) d) ii) qui a été traité en détail, répondre aux questions suivantes :

- 1) Déterminer le diagramme de prédominance des espèces contenant de l'argent en solution en fonction de pCN.
- 2) A partir d'un des points de la courbe ci-contre, déterminer le produit de solubilité de AgCN(s)
- 3) Retrouver par un calcul approprié la pente du segment AB.
- 4) Retrouver la valeur de ps au point M. Interpréter.

Donnée: constante de formation globale du complexe $[Ag(CN)_2]^-$: $\beta = 10^{21}$


Exercice 4: titrage d'un mélange

Paragraphe IV du cours

Titrage de 10mL d'une solution contenant des ions H_3O^+ et et des ions Mg^{2+} par de la soude à 0.1M. On fait un suivi par pHmétrie.

- 1) Interpréter l'allure de la courbe pH=f(V) en justifiant par les réactions correspondant aux différentes parties de ce titrage.
- 2) Déterminer la concentration apportée des ions H₃O⁺(aq)
- 3) Déterminer la concentration initiale des ions Mg²⁺.
- 4) Retrouver le pK_S de $Mg(OH)_2$ en utilisant la courbe.

 $Donn\acute{e}$: $pK_S(Mg(OH)_2) = 11$

