Devoir du samedi 16 mars 2019

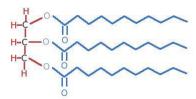
I Huile et eau (25 minutes)

Donnée :

Températures d'ébullition : de l'huile : T_{eb1} 180°C de l'eau : T_{eb2} = 100°C

Densité de l'huile : $d_{huile} = 0.88$

Capacité thermique massique de l'huile : $c_{huile} = 2,0. \ 10^3 \ J.kg^{-1}$. $^{\circ}C^{-1}$ de l'eau liquide : : $c_{eau} = 4,2. \ 10^3 \ J.kg^{-1}$. $^{\circ}C^{-1}$


Masses molaires: $m(H) = 1.0 \text{ g.mol}^{-1}$ $M(C) = 12.0 \text{ g.mol}^{-1}$ $M(O) = 16.0 \text{ g.mol}^{-1}$

Transfert thermique Q reçu par un échantillon de masse m d'une substance A de capacité calorifique massique c lors d'une

variation ΔT de température : $Q = m*c* \Delta T$

avec Q en J, m en kg, c en J.kg⁻¹.°C⁻¹ et ΔT en °C par exemple

L'huile sera considérée comme une espèce pure de triglycéride dont la formule topologique est la suivante :

- 1) Expliquer la différence de température d'ébullition de l'eau et de l'huile.
- 2) Expliquer pourquoi la cuisson dans l'huile est parfois avantageuse en cuisine.
- 3) Un échantillon de volume V = **50** mL d'huile est chauffé de 15 °C à 170 °C. Déterminer l'énergie qu'il faut lui fournir pour atteindre cette température.
- 4) On mélange cet échantillon d'huile à 170 °C à un échantillon d'eau de volume V' = 1,00 L initialement à 20°C. Quelle est la température finale T_f obtenue pour le mélange ?
- 5) Il est connu qu'il est extrêmement dangereux de mélanger de l'huile quasi bouillante avec de l'eau car alors l'eau risque de rentrer en ébullition et de faire des projections d'huile bouillante.
 - a) Pour éviter cela, faut-il rajouter à l'échantillon d'huile précédent une grande quantité d'eau ou une petite quantité d'eau ?
 - b) Déterminer la masse minimale d'eau à ajouter au même échantillon d'huile à 170°C et de volume V afin d'éviter ces projections.

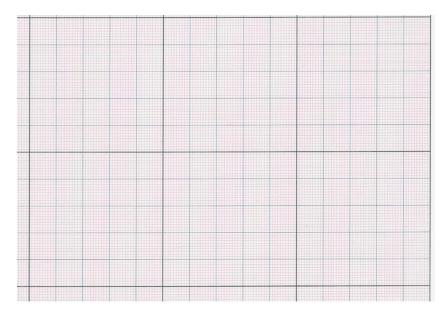
II Chromatographie sur couche mince (15 minutes)

Un élève a mesuré la hauteur du front de l'éluant en fonction du temps par rapport à la ligne de base sur une plaque de chromatographie. A l'instant t = 0 s, le front de l'éluant se trouve sur la ligne de base. Deux expériences sont faites : dans la première, la cuve de chromatographie est ouverte, dans la seconde, la cuve est fermée avec un couvercle. Il a obtenu les résultats du tableau qui suit.

- 1) Quel est le paramètre étudié dans ces expériences ?
- 2) Tracer sur un même graphique sur le papier millimétré de l'annexe les deux courbes $H_1 = f(t)$ et $H_2 = f(t)$.
- 3) L'une montre une relation de proportionnalité. Laquelle ? Pourquoi ? Calculer la valeur de ce coefficient de proportionnalité k. Que signifie-t-il ?
 - 4) Pourquoi vaut-il mieux utiliser une cuve fermée plutôt qu'une cuve ouverte ?

Temps t (s)	0	20	40	60	80	100	120	140
Expérience 1 : H ₁ (mm)	0	5	10	14	18	21	24	26
Expérience 2 : H ₂ (mm)	0	7	12	18	25	31	37	43

III Dissolution (10 minutes)


Le chlorure de cobalt CoCl₂ se dissout dans l'eau pour former des ions chlorure Cl⁻ et des ions cobalt (dont il faudra trouver la formule).

- 1) Rappeler ce qui doit être conservé lors de l'écriture d'une réaction chimique. Déterminer l'équation de réaction de dissolution de chlorure de cobalt CoCl₂.
 - 2) Une quantité de n = 3,5 mmol de CoCl₂ est introduit dans V = 200 mL d'eau.
 - a) Recopier et compléter la phrase sur votre copie : lorsqu'une quantité de x mol de CoCl₂ sont consommées, simultanément, une quantité de mol de Co²⁺(aq) est formée et une quantité de mol d'ions Cl⁻(aq)
 - b) La dissolution étant complète, déterminer la quantité d'ions chlorure en solution puis sa concentration en quantité.

Annexe à rendre avec la copie

NOM:

Exercice II : papier millimétré

