TP de chimie : suivi d'une cinétique par spectrophotométrie

I Transformation étudiée

On étudie la transformation de l'eau oxygénée H_2O_2 avec des ions iodure I^{\cdot} (aq). Cette transformation est lente et totale. Elle produit une espèce colorée I_2 (aq). Elle peut donc être suivie en utilisant un spectrophotomètre. L'équation de la réaction associée est la suivante :

$$H_2O_2(aq) + 2 H^+(aq) + 2 I^-(aq) -> I_2(aq) + 2 H_2O(1)$$

II Buts du TP

- suivre l'avancement de la réaction associée à la transformation étudiée en utilisant la spectrophotométrie,
- déterminer le temps de demi-réaction,
- déterminer la vitesse de réaction au temps de demi-réaction.

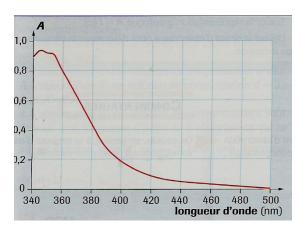
III Protocole expérimental

1 Matériel

spectrophotomètre ou colorimètre avec plusieurs cuves ; chronomètres ; fioles jaugées de 100~mL , fioles jaugées de 25~mL ; burettes graduées de 25~mL (ou 50~mL) ; béchers de 500~mL ; béchers de 100~mL ; cristallisoir avec de l'eau très froide (glaçons) ; pipettes jaugées de 5~mL.

2 Produits

eau distillée ; eau distillée froide ; solution S_1 d'eau oxygénée de concentration $c_1 = 4,0.10^{-2}$ mol. L^{-1} ; solution S_2 d'iodure de potassium de concentration $c_2 = 2,5.10^{-1}$ mol. L^{-1} ; solution S_0 de diiode de concentration $c_0 = 1,0.10^{-3}$ mol. L^{-1} ; acide sulfurique concentré.


3 Manipulation 1 : préparation des solutions étalon de diiode

- Chaque groupe prélève dans une fiole jaugée de 25 mL un volume v₀ de solution de diiode à l'aide des burettes graduées à disposition (voir tableau suivant) puis complète avec de l'eau distillée. 9 solutions étalon sont ainsi préparées.
 - (*) Comment s'appelle cette pratique chimique ? Qu'utilise-t-on normalement à la place des burettes graduées ?
 - (*) Calculer la concentration C des différentes solutions étalon obtenues en complétant le tableau.

Groupe n°	1	2	3	4	5	6	7	8	9	
Solution n°	1	2	3	4	5	6	7	8	9	10
Volume de diiode à prélever v ₀ (mL)	5,0	7,5	10,0	12,5	15,0	17,5	20,0	22,5	24,0	25,0
C (mol.L ⁻¹)										1,0.10 ⁻³
A (spectrophotomètre)										

Mesurer l'absorbance A de la solution préparée, pour chaque groupe, avec le spectrophotomètre pour une longueur d'onde λ égale à 440 nm. Quelle longueur d'onde aurait-on pu utiliser plutôt (à déterminer en utilisant le spectre d'une solution de diiode (pour une certaine concentration et une certaine épaisseur de cuve) donné ci-contre). Justifier très précisément. En réalité on ne le fait pas car le spectrophotomètre saturerait avec les concentrations utilisées.

• Réunir l'ensemble des absorbances des différentes solutions au tableau et compléter le tableau précédent

4 Manipulation 2

- Dans un bécher de 500 mL, verser $v_1 = 100$ mL de solution S_1 et ajouter 20 gouttes d'acide sulfurique concentré.
- Dans un bécher de 100 mL, verser $v_2 = 100$ mL de la solution S_2 .
- A la date t = 0 s, déclencher les chronomètres et mélanger le contenu des deux béchers. Dès le mélange effectué, préparer plusieurs fioles jaugées (de volume v₃ = 100 mL) contenant chacune un volume v₄ = 5,0 mL de mélange prélevé à la pipette jaugée. Dans chaque fiole, la réaction évolue de la même façon que dans le mélange (un deuxième mélange est réalisé conjointement au 1^{er} sans être perturbé pour en être persuadé).
- (*) Qu'est-ce que signifie « Dans chaque fiole, la réaction évolue de la même façon que dans le mélange » ? En particulier, quelle(s) grandeur(s) est (sont) identique(s) dans les fioles et dans le mélange, à chaque instant ? Quelle(s) est (sont) celle(s) qui ne l'est (le sont) pas ?
- Aux dates indiquées ci-dessous, ajouter dans une des fioles préparées auparavant de l'eau distillée glacée jusqu'au trait de jauge et agiter. On procède ainsi à une dilution et à un abaissement de la température du milieu appelés trempe.
 - (*) Quel(s) est(sont) l'(les) intérêt(s) de la trempe?
- Mesurer l'absorbance A avec le spectrophotomètre des solutions de chaque fiole en en versant un peu, pour chacune, dans une cuve spectrophotométrique. Compléter la ligne correspondante du tableau.

Groupe n°				1	2	3	4	5	6	7	8	9
Fiole n°		1	2	3	4	5	6	7	8	9	10	11
t (min)	0	1	3	6	9	12	15	18	21	24	27	30
A (colorimètre)												
[I ₂] dans la cuve (mol.L ⁻¹)												
[I ₂] dans le mélange (mol.L ⁻¹)												
x (mol)												

Mettre en commun les résultats au tableau concernant les absorbances.

IV Exploitation des manipulations

1 Manipulation 1

- Compléter le tableau de la manipulation 1 et tracer la représentation graphique A = f(C).
- Quelle relation existe-t-il entre A et C?

2 Manipulation 2

On s'intéresse à la cinétique du système chimique contenu dans le grand bécher de départ <u>comme si celui-ci</u> <u>n'avait pas été perturbé par les prélèvements successifs</u>. Chaque prélèvement ne sert en réalité qu'à déterminer la concentration en $I_2(aq)$ à une certaine date en utilisant la spectrophotométrie.

- (*) Calculer les quantités initiales de H_2O_2 (aq) et de I^- (aq).
- (*) Dresser le tableau d'évolution de la transformation (EI, E intermédiaire, EF). Quel est le réactif limitant ?
- (*) Donner la relation permettant de calculer x connaissant la concentration en diiode, à chaque instant, dans le mélange.
- (*) Donner la relation permettant de calculer la concentration de diiode dans le mélange connaissant cette concentration dans une cuve spectrophotométrique (attention aux différentes étapes de manipulation).
- Compléter le tableau, calculer la valeur de x à chaque date.
- Tracer la représentation graphique x = f(t).
- Le temps de demi-réaction, noté t_{1/2}, correspond à la durée au bout de laquelle l'avancement de la réaction atteint la moitié de son avancement final.
 - (*) Traduire cette phrase par une égalité mathématique.

Déterminer le temps de demi-réaction expérimental en expliquant votre démarche.

A la vue du graphique obtenu, au temps de demi-réaction, la vitesse de la réaction vous semble-t-elle plus ou moins élevée qu'au départ ? Comment pouvez-vous, à partir du graphique x = f(t), traduire le caractère rapide ou lent d'une réaction à une certaine date ?

- La réaction est-elle terminée au bout de 30 minutes ?